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Abstract 

 

The developmental increase in structural complexity in multicellular lifeforms depends on local, often non-periodic 

differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal 

genome. To better understand how genomic information generates complex expression patterns, I have modeled the 

pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of 

these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative 

(repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental 

pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under 

suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative 

arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway 

components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway 

components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple 

response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, 

spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it 

is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. 

Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution 

of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions 

than on the increase in numbers of regulatory genes.  
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Introduction 

 

The evolution of complex multicellular life requires the ability to generate differentiated cell types in a spatially and 

temporally co-ordinated manner. Developmental increase in complexity during metazoan morphogenesis is guided by 

developmental regulatory genes, which are expressed in complex but stereotypical spatial and temporal patterns. The 

expression patterns depend on regulatory interactions between genes. These interactions depend on the molecular 

affinities of each gene product to other gene products or to regulatory DNA sequences. All genes are regulated by 

products of the same and/or other genes. Therefore, the interactions form an information processing network coded 

within the organismal genome. Though genome function is usually studied in the context of single cells (e.g., Guelzim 

et al., 2002; Ravazs et al., 2002; Snel et al. 2002) in multicellular animals this information network spans all cells 

(Gerhard and Kirschner, 1997). Key questions in the evolution of multicellular life are; how does a gene interaction 

network generate multiple cell types, each expressing different but overlapping parts of the genome, and what features 

of such network affect the morphogenesis of complex organisms. 

 

The development of complexity has traditionally been simulated through spatio-temporal changes in binary fate choises 

that arise in a self-organizing manner (e.g., Turing, 1952; Collier et al., 1996; Salazar-Ciudad et al., 2000). These 

models often emphasize the generation of periodic patterns, which can explain the development of repetitive structures, 

such as hydra tentacles (Turing, 1952), pigment spots (Asai et al., 1999) or animal segments (Salazar-Ciudad et al, 

2001a). However, metazoan bodyplans contain many non-periodic features. Development of unique organs often 

requires complex, and effectively nonperiodic pattern formation. Even serially repeated organs, like segments, often 

have unique, non-periodic differences (McGinnis and Kuziora, 1994; Gilbert, 1998). Moreover, a unicellular yeast has 

~6000 genes to maintain its single cell, whereas a metazoan fruitfly has only ~14000 genes for differentiating its 

thousands of embryonic, larval and adult cell types in a complex and stereotypical pattern (Rubin et al., 2000). To 

answer this N-value paradox,. i.e., why morphological complexity of the organism does not better correlate its gene 

numbers (Claverie, 2001), we need to know: what kind of genomes are required to generate multiple different cell types, 

and how much input information is required for multi-cell type pattern formation?  

 

The role of individual gene-gene interactions’ strengths, i.e. the molecular kinetics and affinities, in pattern formation 

has been extensively studied (e.g., Asai et al., 1999; von Dassow and Odell, 2002). Therefore, I asked: what is the role 

of network structure  (i.e., the graph that describes the topology of gene-gene interactions or the qualitative connections 

between genes) in generating patterns, especially the complex, nonperiodic ones that are essential for metazoan 

development, and what kinds of features are involved in generating developmental complexity? 

 

The 14000 genes of a fruitfly have 140002 potential two gene interactions and 214000 potential binary expression 

combinations. The real complexity of connections between the genes is even more hyperastronomical, and largely 

unknown, involving, e.g., multiple levels of post-transcriptional regulation (Gerhart and Kirschner, 1997), multiprotein 

complexes (e.g., Sobott and Robinson, 2002), various forms of second messenger signaling (Hunter, 2000), and purely 

JTB version 1 3 



mechanistical integration of morphogenetic effects of various signaling pathways (Gerhart and Kirschner, 1997; Oster 

and Murray, 1980; Salazar-Ciudad and Jernvall, 2002). This makes in vivo biological networks effectively unmodelable. 

Hence, simpler models must be used for initial mapping of the generic pattern formation properties of information 

processing networks. 

 

I began the modeling with extremely simple genomes of the virtual organisms containing only 2-, 3-, 4-, 5-, or 6-pairs 

of genes (an intercellular signal and its specific intracellular effector), and coded for the 4 – 36 potential interactions 

between each signal and all its targets. The model was based on several premises. 

 

1) Each cell in an organism has the same genome. Since each cell is a separate compartment, local differences in 

signaling can lead to differentiation of cell types (Collier et al., 1996). Inversely, because different cells are individual 

compartments, they can have different proteomes (Gerhart and Kirschner, 1997). Thus, each cell can access different 

parts of the genome when encountering the same signals. Though the coded strengths of the potential interactions 

remain constant through the simulation, the actual signaling depends on the concentrations of signal and effector gene 

products in each cell.  

 

2) Each signaling interaction affects directly, additively, and independently to the concentrations of the signals and the 

effectors in the target cell.  

 

3) Because many important patterning events occur at blastoderm stage, when the main embryo in some 

metazoans, like fruitflies or sea urchins, is essentially a simple hollow two-dimensional sheet of cells (Gerhart and 

Kirschner, 1997; Wolpert, 1998), formation of complex patterns does not need to occur in a morphologically complex 

environment. Consequently, the virtual organisms in the model mimicked a hollow cellular blastoderm with a virtual 

organism consisting of a closed 2D-sheet of 30 x 40 cells.  

 

4) Though many of the extant models generate nonperiodic patterns by differential responses to different 

concentrations of a diffusible morphogen from a local source (Wolpert, 1998; Gurdon and Bourillot, 2001), pattern 

formation can also be based on cell-to-cell relays, which is a common form of intercellular communication (e.g., 

Bosenberg and Massague, 1993). Hence, in this model, the intercellular signaling cascades spread deterministically in 

two-dimensions via cell-to-cell relays. 

 

5) The formation of complex spatial patterns requires at least one spatial inhomogeneity that can either arise randomly 

by stochastic phenomena (Turing, 1952; Elowitz et al., 2002) or be developmentally or environmentally determined 

(Wolpert, 1998; Bachvarova, 1999). The signaling cascades in the model began from a point source of one signal, that 

acted as an initial input. As an intercellular signal was not effective unless the target cell expressed its specific effector, 

all cells expressed the effector to the input signal at the beginning. 
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Results 

 

Simple multisignal networks with negative interactions can translate a single signal to multiple cell fates  

 

The first question was: how easily do the identical cells with same genome can differentiate into more than one cell 

type, when presented one spatial input? To answer this, I generated 2-, 4-, 5-, and 6-signal genomes, and tested their 

pattern formation capabilities in 30 x 40 cell virtual organisms that mimicked metazoan blastoderm embryos. Though 

the genes were the same for all 1000 networks in each simulation, the networks differed by the quality (positive or 

negative) and positions of the connections, and the quantitative strengths of each connection. The temporal dynamics of 

gene expression were iterative. At the beginning, the cells of an organism expressed initial input, which was used for 

reading the genome into an output of the 1st iteration. During following iterations, the output of the previous iteration 

became the new input.  

 

In any networks, if all cells expressed initially the same selection of genes, patterns were not formed, though the 

combination of genes expressed in all cells may have changed from the initial one (not shown). This confirmed the 

knowledge that at least one spatial difference is needed to initiate the pattern formation cascade (Turing, 1952). Figure 

1 shows how one initial input signal in one cell is converted into a complex pattern by relay of secondary signals and 

effectors, which become induced in different combinations. In other words, developmental increase in complexity can 

begin from very simple inputs.  

 

How easily does the formation of complex patterns occur? Figure 2A shows how many out of 1000 simple networks 

produced any expression patterns, and the summed complexities of the formed patterns. The pattern formation 

frequencies and the pattern complexities increased with the size of the network. Though no pattern or simple patterns 

(≤2 gene combinations) are most common, complex patterns (>3 different gene combinations) exist at reasonable 

frequencies. Because the networks above were both simple (≤12 genes, ≤6 signaling inputs to control each gene), the 

evolution of developmental signaling networks capable of generating complex outcomes was probably not limited by 

rate of increase in numbers of developmental regulatory genes. Moreover, because even randomly generated networks 

commonly produced complex patterns, chance appearance of simple networks capable of pattern formation probably 

was not the rate limiting step for evolution of complex multicellular organisms. 

 

Frequency and complexity of pattern formation depends on the distribution of network connections  

 

How did the network connectivity affect the pattern formation? In networks, where on average 50% of the connections 

were negative, the pattern formation frequency was lower but the pattern complexity was higher than in networks 

where 50% of interactions were merely inactivated by setting their strength to 0 (Fig. 2B). This suggests that negative 

signaling interactions are essential for developmental increase in metazoan complexity. This also indicates that the 
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negative interactions do not act merely by passively replacing the positive connections, but by actively disrupting the 

existing positive circuits. 

 

The overall effects of the negative or inactive interactions depended on their distribution within the networks. This is 

shown by the comparison of the 6-signal networks where on average 50% of the interactions were randomly inactivated 

(Fig. 2Ba,d), 50% of the interactions were negative (Fig. 2Bb,e), 50% of the interactions were eliminated and of the 

rest 50% were negative and 50% positive (Fig. 2Bc,f). In Fig. 2Ba,b,c, the signals and their effectors were differently 

regulated, whereas in d,e,f the regulatory interactions were identical for signals and their effectors. Interestingly, when 

the signals and their effectors were regulated by the same sets of positive, negative, or inactive connections, patterns 

were produced more frequently than when connections were distributed differently between signals and their effectors. 

Indeed, when signals and their effectors were similarly regulated, even at 50% connectivity, the pattern formation 

likelihood was higher than in fully connected networks where signals and their effectors were differently regulated (Fig. 

2Bc,f). This suggests that similar regulation of whole signaling module (signal and its intracellular effector) reduces the 

disruptive effects of inactive or negative connections, whilst maintaining most of the complexity increasing effects of 

the negative interactions.  

 

The complex patterns can be generated based on qualitative network structure only 

 

Above results show that the same 4 - 12 genes can produce different patterns depending on the set of connections 

between the genes. Did the differences between the network outputs depend on the strengths of the individual 

interactions alone, or did the network structure have an effect on pattern formation? The role of network structure 

compared to the strengths of the individual interactions in creating complex patterns can be analyzed by controlling the 

strengths of the interactions while maintaining the same network structure. Decreasing the rate of gene decay allows 

longer time window for the gene product to act. Decreasing the interaction constants reduces the rate of product 

increase and/or decrease by the current signals. When I decreased the interaction constants by multiplying them all with 

0.2, 0.4, 0.6 or 0.8, it reduced the maximum pattern size, complexity and pattern formation frequency (Fig. 3), as does 

reducing the amount of signal amplification (not shown). Decreasing the rate of decay by setting it to 0.4, 0.3, 0.2, 0.1 

or 0.0 increased the maximum pattern size, complexity and pattern formation frequency (Fig. 3). Decreasing 

simultaneously both rate of decay and the interaction constants produced patterns at intermediate frequencies and 

pattern complexities, though the pattern sizes increased. This is in accordance with the earlier studies that indicate that 

the strengths of the connections (or kinetic parameters of the signaling interactions) affect the development of complex 

patterns (Asai et al., 1999; Wearing et al. 2000). 

 

However, when the effective concentrations of the signals and/or their effectors were thresholded to give binary 

response, that changed the target gene concentration for the amount of the full interaction constant (if the concentration 

of the signal and/or the effector were above the threshold level) or for zero amount (if the concentration was below the 

threshold level), the networks could still often produce multiple cell types, although more often at lower than at higher 
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thresholds (Fig. 4A). Giving different thresholds for different signals and/or effectors produced complex patterns with 

lower frequency than giving the lowest threshold for all signals and/or effectors, but at higher frequency than giving the 

highest threshold for all signals and/or effectors. Moreover, complex patterns could also form, when all the negative 

interaction constants were set to -0.7 and all the positive interaction constants were set to 0.7 (Fig. 4Bs). Thresholding 

the standard interaction constant [-0.7, 0.7] networks also produced complex patterns (Fig. 4B). Together, the results 

indicate that the differences between the strengths of interactions are not necessary for producing complex patterns, nor 

are different concentration thresholds of one (or more) morphogen(s) required for different cell type responses in this 

model. The same twelve signaling genes could produce multiple gene combinations in different patterns even when 

only qualitative network structures were different. This strongly suggests that the signaling network structures must be 

under selection in evolution of multicellular lifeforms. 

 

Non-periodic patterns 

  

Many of the complex patterns (> 2 gene combinations) produced by these small, random networks were non-periodic 

or quasiperiodic, having both periodic and non-periodic elements (Fig. 5). This suggests that the evolution of positional 

co-ordinate systems for unique organs and cell types is easy. Though the induction of different cell types depended on 

cell-cell relays, many cell types were several cells wide in radial axis (e.g., Fig. 5). This recapitulates previous 

studieson binary fate choises by juxtacrine signaling (Wearing et al., 2000). Since some important intercellular signals 

do not diffuse over long distances (e.g., Collier et al., 1996; Juliano and Varner, 1993), it is possible that some long 

distance (non-periodic) patterning events creating positional information result from cell-to-cell information relays. 

 

Incidentally, the random strength interactions, standard strength interactions, and random/standard strength interactions 

combined to binary signaling thresholds could produce also non- or quasiperiodic patterns (Fig. 5). Combined to the 

cell-cell relay that eliminated long distance diffusion from the model, this indicates that multiple concentration 

dependent responses to a diffusible morphogen are not in theory essential for development of a positional co-ordinate 

system (Wolpert, 1998; Gurdon and Bourillot, 2001). Rather, this relay model translates one initial local signal (a 

single morphogen peak) into a sequence of cells with different expression combinations via series of secondary 

inductions (Meinherdt and Gierer 1980). Because same genes and inputs were used for in different networks in a same 

simulation, the precense and complexity of a pattern depended on the signaling hierarchy between the genes.  

 

Discussion 

 

Evolution of structurally complex multicellular lifeforms, like metazoans, depends on heritable changes in 

morphogenesis. Morphogenesis is guided by a network of gene-gene interactions coded in the genome of the organism. 

However, relatively few studies have tackled the effects of network structure in developmental increase in complexity 

(e.g., Salazar-Ciudad et al., 2000, 2001b; Kauffman, 1993). Therefore, I wanted to know which basic properties of the 
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signaling networks affect the formation of complex expression patterns that guide the cell differentiation and 

organogenesis.  

 

Complex patterns did not require complex genomes or complex input information 

 

Metazoan complexity is often equated with their complex 13000 – 40000 gene genomes. However, the simulations 

showed that even simple 12-gene networks can commonly produce patterns with multiple different cell types from a 

single spatial input (Figs. 1 and 2). This conforms with the earlier studies, which showed that gene networks commonly 

produce single gene spatial patterns (Salazar-Ciudad et al. 2000). Thus, theoretically only small portion of the 

metazoan genome is required for organizing metazoan embryogenesis. Inversely, this supports the idea that the effects 

of many genes can be integrated to relatively few but mutually separable cellular responses, the combinations of which 

can produce an impressive range of morphological complexity (Gerhart and Kirschner, 1997; Salazar-Ciudad and 

Jernvall, 2002). Both inferences drastically simplify the problem of evolution of developmental complexity. 

 

The key to the developmental complexity is the spatial and temporal interplay between individual cells that express 

different parts of the whole network. In vivo, the same cell may at any given moment have access to a different parts of 

its genome, depending on its current proteome that the cell uses for reading its genome. In these simulations, each 

iteration can produce a different output (Fig. 1). On the other hand, though almost all cells in the model are initially 

similar, being responsive to the same signal, after this initial inductive signal has passed, each cell’s temporal 

differences relative to its neighbors (together with the continuing relay of new signals back and forth) can induce 

different sets of secondary responses. The cells in vivo may also be able to respond differently to multiple alternative 

initial input signals, and the temporal effects of signaling may be more complex. For example, because of the 

biochemical differences between signaling pathways, different signals may be produced, or they may be translated into 

various cellular responses at different rates (Gurdon and Bourillot, 2001; Tabata, 2001). However, despite the greater in 

vivo complexity of signaling, the effects of temporal differences between the target cells are likely to be analogous to 

those in this model. Hence, the simulations suggest that multiple spatially separate inputs are not, at least initially, 

essential for generating metazoan cell types.  

 

Network structure, pattern formation, and evolution 

 

Many of the previous studies have emphasized the effects of the strengths of the individual interactions on pattern 

formation (e.g., Asai et al., 1999; Wearing et al., 2000; Meir et al. 2002). However, both prokaryotic and eukaryotic 

gene regulatory networks characteristically contain many negative interactions (e.g., von Dassow and Odell, 2002; 

Gerhart and Kirschner, 1997, Davidson et al., 2002), and the scale-free distribution of connections between individual 

genes is often further non-randomly organized (Ravasz et al, 2002; Shen-Orr et al. 2002; Snel et al., 2002). These 

architectural features are likely to have been selected for their functionality.  
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Though the simulations showed that changing the strengths of the interactions also changed the pattern formation 

capabilities of the networks (Fig. 3), standardizing the interactions constants and thresholding the effective gene 

concentrations did not remove the networks ability to generate complex patterns (Fig. 4). This supports the view that 

the qualitative structure of the network has a role in generating developmental complexity (Salazar-Ciudad et al., 2000; 

Kauffman, 1993). Because individual signaling molecules and cis-regulatory enhancers or suppressors are, to an extent, 

interchangeable between species and even phyla despite some sequence divergence (Gerhart and Kirschner, 1997; 

Onuma et al., 2002; Ludwig et al., 1998), morphological evolution may have depended as much on qualitative changes 

in network architecture as on the quantitative changes in the strengths of individual interactions. 

 

The distribution of connections dramatically affects the pattern formation frequencies and the development of complex 

patterns. Though the pattern formation capabilities of the network depended on its size, presence of negative 

interactions was more important (Fig. 2). Random negative connections increase the pattern complexity but decrease 

the pattern formation frequencies. However, without negative interactions only simple patterns were produced (Fig. 2), 

especially in the absence of expression decay (not shown). Thus, the appearance direct negative interactions, e.g., 

DNA-binding proteins that block the promoter activity, or indirect negative interactions that downregulate the upstream 

amplification of signals leading to positive interactions, has been crucial for evolution of complexity.  

 

Inactive connections decrease the pattern formation frequencies and the pattern complexity. This happens also in 

networks that contain negative interactions (Fig. 2). However, when both extracellular signals and their intracellular 

effectors were similarly regulated by same signals, the pattern formation likelihoods increased both in fully connected 

and in 50% connected networks. The distribution of connections in both metabolic and transcriptional networks is 

known to be more or less scale-free (Wolf et al., 2002, Goh et al. 2002) and non-random or modular (Ravasz et al., 

2002; Shen-Orr et al., 2002; Snel et al. 2002; Guelzim et al., 2002), probably because of the selection acting on the 

network structure. Because maintaining the expression of regulatory genes is often essential for developmental pattern 

formation, and similar regulation of both signal and its effector(s) within a regulatory signaling module increases the 

pattern formation likelihood of the network (Fig. 2B), also autoregulatory loops and/or co-regulated cassettes of 

developmental regulatory genes are likely to have been selected for during evolution. In prokaryote and yeast metabolic 

networks, co-regulation of metabolic pathway components is frequent by common operons and/or common 

transcription factors (Struhl, 1999; Ihmels et al., 2002). Therefore, prevalence of co-regulation within analogous 

metazoan developmental signaling networks would not be surprise. If, however, further analysis of in vivo signaling 

network structures shows that co-regulation of metazoan signaling pathway components occurs only at low frequency, 

this may indicate opposing evolutionary forces. 

 

Quasiperiodic and non-periodic patterns  

 

Though self-organizing patterns that produce periodically self-similar outcomes are more commonly studied (Asai et 

al., 1999; von Dassow et al., 2000), real animal bodyplans are much more complex, combining many non-periodic to 
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many periodic features (Gerhart and Kirschner, 1997). The non-periodic pattern elements can be  biologically 

meaningful in positioning unique cell types and organs (Kauffman, 1993). Non-periodic pattern formation is also 

essential for morphological diversification of serially repeated structures, such as plant organs (Kieffer and Davies, 

2001), metazoan segments (McGinnis and Kuziora, 1994; Gilbert, 1998), or vertebrate teeth (Stock et al., 1997). 

Because all the different pattern elements must be produced by the same genome, the main questions are; 1) how 

complex a signaling network is required, and 2) can all patterns be produced by the same network, or does the genome 

contain multiple, parallel signaling networks?  

 

The complex patterns produced in these simulations were common, and often non-periodic, or quasiperiodic, 

containing both periodic and non-periodic elements (Fig. 5). This demonstrates that simple genomes can produce all 

kinds of patterns.  

 

The existence of non-periodic patterns shows that determination of multiple unique positional identities along the 

bodyaxes is possible even with small signaling networks, assuming that different combinations of the same genes 

regulate different cell fates or morphogenetic effects. Because the model was based on cell-to-cell relays and because 

the binary thresholds combined to standard strength interactions still produced quasi- or non-periodic patterns (Fig. 5), 

morphogen gradients with multiple different effective response thresholds (Wolpert, 1998; Gurdon and Bourillot, 2001) 

are not theoretically essential for non-periodic developmental pattern formation. In fact, because non-periodic and 

quasiperiodic patterns were common in these simulations, and largely dependent on intercellular signaling network 

structure, if morphogen gradients with differential response thresholds are a dominant mechanism for producing 

positional co-ordinates, they probably have some advantage, like pattern stability (Hunding et al. 1990), that has been 

favored in evolution of developmental signaling networks (Salazar-Ciudad et al. 2001b). 

 

The existence of quasiperiodic patterns (Fig. 5) suggests that segregation into periodic and non-periodic pattern types is 

neither clear nor, at least in theory, necessary. This means that to better integrate the different types of patterns 

(periodic, quasiperiodic, and non-periodic ones) into the same body plan, further studies signaling network function and 

evolution are required. For example, because random chance in these simulations commonly produced signaling 

networks that generate quasiperiodic patterns, if the periodic and the non-periodic pattern elements in vivo are 

predominantly produced by different developmental modules, this feature in signaling network structure is likely to 

have been selected for during evolution.  

 

Conclusions 

 

Real animal bodyplans require nonperiodic patterns, e.g., for positional co-ordinate systems (Wolpert, 1998; Kauffman, 

1993). The simulations show that even small signaling networks can commonly generate multiple cell types from very 

simple inputs. Because (unlike large signaling networks) small signaling networks are reasonably likely to arise by 

chance alone, the evolution of metazoan complexity and positional co-ordinate systems was not limited by network 
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complexity. This suggests that the evolution of metazoan complexity has not depended on the genome size alone (see 

also Claverie, 2001; Salazar-Ciudad et al, 2001b; Gerhart and Kirschner, 1997). 

 

Though the strengths of interactions have a role in pattern formation, differences in interactions strengths or multiple 

concentration dependent response thresholds to a diffusible morphogen are not essential for generating spatial patterns. 

Thus, the same 4 – 12 genes could produce very different patterns depending on the structure of the signaling network 

alone. In other words, the qualitative structure of the signaling network alone has a significant input on the 

development of complexity (Salazar-Ciudad et al., 2000).  

 

The patterns on these simulations are different subsets of same larger set of genes. However, with combinatorial control 

logic, different subsets of same relatively small set of developmental regulatory genes can be translated into multiple 

organs or cell types. Interestingly, the simulations show that many of the gene combination patterns based on cell-to-

cell relays were spatially nonperiodic or quasiperiodic with overlapping periodic and nonperiodic features. Hence, 

multiple networks are not theoretically essential for generating spatial co-ordinate systems in complex multicellular 

organisms. 

 

Negative interactions greatly increased the pattern complexity. The frequency and the complexity of the patterns 

increased if only the effectors were negatively regulated or if both signals and their effectors are similarly regulated. 

Thus, there may be an evolutionary bias for co-regulated modules in developmental signaling networks. There also may 

be a bias for controlling the complexity via the intracellular signal processing rather than by regulating the pattern of 

extracellular signals. Because the patterning complexity depends on the structure of the signaling network, and because 

the network has to evolve by random mutations, it may be that the evolution of multicellularity has also been facilitated 

by evolution of intracellular requlatory mechanisms that predispose the mutations for negative interactions and co-

regulation.  

 

To test these hypotheses, more studies are needed on the effects of random mutations on networks that use different 

kinds of signal processing logic, and on the distributions of connections in the real metazoan signaling networks. 

 

 

Methods 

 

1000 networks of each kind were generated and tested with same initial conditions. The 4-, 6-, 8-, 10- or 12-gene 

networks consisted of the same 2-, 3-, 4-, 5- or 6-signals and their specific intracellular effectors, through which they 

only could interact. However, the 8-, 12-, 16-, 25- or 36-interaction constants between each signal and all its target 

genes for each network were randomly set between [-1, 1] before simulations. On average 50% of the connections were 

negative (repressive) and 50% were positive (inductive) Each gene could be expressed in each cell at strength [0, 4]. 

The signals deterministically increased or decreased the concentrations of their targets at each iteration, depending on 
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the current concentration of the received signal multiplied with the current concentration of the effector in the receiving 

cell, and the constant interaction strength.  

 

The simulations were run in artificial organisms made from matrix of 30 x 40 cells. Each cell signals to itself at 

strength 1.0 x signal concentration, and communicates with four neighbors at strength 0.25 x signal concentration each, 

leading to cell-to-cell relay of signals. Each signal is amplified by the concentration of its effector in each target cell. 

The opposing edges were joined creating a continuous 2D surface. The pattern formation began from an initial input of 

one signal present at full concentration in one cell. Additionally, all cells initially expressed the receptor for the original 

signal at full concentration. The expression of all genes decayed at specific rate 0.5 (unless different rate was specified) 

per iteration. The system was allowed to run 50 or 150 iterations before analyzing the output. 

 

I tested the effects of connectivity distribution with 6-signal networks. The average connectivity was reduced by 

replacing interactions with 0-strength interactions. Both fully random distributions of 0-strength and/or negative 

connections and random controls that were identical for signal and its effector were tested. If only signals were also 

negatively controlled, all interactions controlling the effector were positive, and vice versa. In standard interaction 

experiments, all the positive interactions were set to 0.7 and negative interactions at -0.7. In induction strength 

experiments, the strengths of the interactions were reduced by multiplying them with 0.2 – 1.0. In threshold 

experiments, above the threshold concentrations, the signals and/or their effectors affected their targets for the (non-

multiplied) amount of interaction strengths coded in the network, whilst below threshold concentrations they had no 

effect.  

 

A pattern was defined as an virtual organism where different cells expressed different on/off-combinations of genes. 

Some patterns contained only one gene combination in some cell(s) and cells without expression. The patterns were 

analyzed by counting the number of networks out of 1000, that after the final iteration had produced spatial patterns, 

the sizes of the produced patterns, and the numbers of cell types.  

 

The simulation and analysis programs were written in PERL 5.6 and used GD-, PDL-, and PDL::IO::FastRaw-modules 

(http://www.cpan.org). The simulations were run in MacOSX G4 PowerMac (Apple). The column plots were made 

with Excel (Microsoft). The image plates were made in Photoshop (Adobe) and Powerpoint (Microsoft). The PERL-

scripts are available at request from author. 
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Figure 1. 

First 15 iterations from initial input of one signal in a fully connected random 6-signal network with negative 

connections at decay 0.5.  

 

Figure 2. 

A) Effects of network size and negative interactions. Cumulative numbers of 2-, 3-, 4-, 5-, and 6-signal networks 

expressing patterns of different complexities after 50 iterations at decay 0.5. n100 fully connected with 50% 

connections negative; p50 fully 50% connected, positive connections only. 

B) Effects of distribution of positive and negative interactions. a) 50% connected networks with fully random positive 

interactions,  b) fully connected networks with fully random positive and negative interactions,  c) 50% connected 

networks with fully random positive and negative interactions,  d) 50% connected networks with similar positive 

interactions for both signals and their effectors, e) fully connected networks with similar positive and negative 

interactions for signals and their effectors,  f) 50% connected networks with similar positive and negative interactions 

for signals and effectors. The decay was 0.5, number of iterations 50. 

 

Figure 3. 

Effects of product decay and interaction constants on output of fully connected 6-signal networks. Rates of decay were 

0.5 (a, g – l), 0.4 (b, m), 0.3 (c, n), 0.2 (d, o), 0.1 (e, p), or 0.0 (f) per iteration. The interaction constants were multiplied 

with 1.0 (a – g, l), 0.8 (h, m), 0.6 (i, n), 0.4 (j, o), or 0.2 (k, p) to make the effects partially comparable to decay rates 

0.4, 0.3, 0.2, 0.1. The patterns were allowed to develop for 50 iterations 

 

Figure 4. 

A) Thresholding the effective concentrations of all the signals (a, b, c, d, e, f), effectors (g, h, i, j, k, l) or signals * 

receptors (m, n, o, p, q, r) to 0.2 (e, k, q), 0.4 (d, j, p), 0.6 (c, i, o), 0.8 (b, h, n) or 0.1 (a, g, m) reduced the pattern 

formation frequency and complexity relative to non-thresholded simulations (s) as the threshold size increased. 

Different thresholds for different signals (f), effectors (l), or signals * receptors (r) produced patterns at frequency and 

complexity intermediate to the lowest and highest thresholds. 

B) Standardizing the interaction constants to [-0.7, 0.7] increased the pattern formation frequency relative to random 

networks outputs. The outcomes of different conditions were also more equal to each other. The rate of decay in both 

simulations was 0.5, the number of iterations 50. a – s; as above  

  

Figure 5. 

Examples of patterns produced by 6-signal networks with random strength interactions (A), standard strength 

interactions (B), random interactions at threshold concentration 0.2 for signal * effector complex (C), and standard 

strength interactions at same threshold conditions (D). The patterns developed for 150 iterations at decay 0.2. 
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